Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on Particle Size Distribution from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0877
The effect of a Johnson Matthey catalyzed continuously regenerating technology™ (CCRT®) filter on the particle size distribution in the raw exhaust from a 2002 Cummins ISM-2002 heavy duty diesel engine (HDDE) is reported at four loads. A CCRT® (henceforth called DOC-CPF) has a diesel oxidation catalyst (DOC) upstream (UP) of a catalyzed particulate filter (CPF). The particle size data were taken at three locations of UP DOC, downstream (DN) DOC and DN CPF in the raw exhaust in order to study the individual effect of the DOC and the CPF of the DOC-CPF on the particle size distribution. The four loads of 20, 40, 60 and 75% loads at rated speed were chosen for this study. Emissions measurements were made in the raw exhaust chosen to study the effect of nitrogen dioxide and temperature on particulate matter (PM) oxidation in the CPF at different engine conditions, exhaust and carbonaceous particulate matter (CPM) flow rates.
Technical Paper

Operation of a Natural Gas Direct Injection Compression Ignition Single Cylinder Research Engine

2023-04-11
2023-01-0260
The medium and heavy-duty powertrain industry trend is to reduce reliance on diesel fuel and is aligned with continued efforts of achieving ultra-low emissions and high brake efficiencies. Compression Ignition (CI) of late cycle Directly Injected (DI) Natural Gas (NG) shows the potential to match diesel performance in terms of brake efficiency and power density, with the benefit of utilizing a lower carbon content fuel. A primary challenge is to achieve stable ignition of directly injected NG over a wide engine speed and load range without the need for a separate ignition source. This project aims to demonstrate the CI of DI NG through experimental studies with a Single Cylinder Research Engine (SCRE), leading to the development of a mono-fueled NG engine with equivalent performance to that of current diesel technology, 25% lower CO2 emissions, and low engine out methane emissions.
Technical Paper

Extraction of Liquid Water from the Exhaust of a Diesel Engine

2015-09-29
2015-01-2806
Introducing water in a diesel engine has been known to decrease peak combustion temperatures and decrease NOx emissions. This however, has been limited to stationary and marine applications due to the requirement of a separate water supply tank in addition to the fuel tank, thereby a two-tank system. Combustion of hydrocarbon fuels produce between 1.35 (Diesel) and 2.55 times (Natural Gas) their mass in water. Techniques for extracting this water from the exhaust flow of an engine have been pursued by the United States department of defense (DOD) for quite some time, as they can potentially reduce the burden of supply of drinking water to front line troops in theater. Such a technology could also be of value to engine manufacturers as it could enable water injection for performance, efficiency and emissions benefits without the drawbacks of a two-tank system.
Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
X